ABOUT ME

-

Today
-
Yesterday
-
Total
-
  • HBASE 설정
    프로그래밍/hbase 2017. 12. 28. 11:41
    728x90

    HBASE 설정

    현재 IDC에 운영중인 hadoop 클러스트에서 HBASE 기반의 피닉스를 같이 운영하다보니 
    여러가지 문제가 발생하고 있다.

    가장 큰 문제는 HBase RegionServer가 자꾸 죽는 다는 것이다.
    원인은 메모리!! Node Manager랑 Region Server를 같이 쓰다 보니 메모리가 절대 부족...
    어떻게 공유 하면서 최적으로 사용 할 수 있을까...

    The JVM is doing a long running garbage collecting which is pausing every threads (aka "stop the world"). Since the RegionServer’s local ZooKeeper client cannot send heartbeats, the session times out. By design, we shut down any node that isn’t able to contact the ZooKeeper ensemble after getting a timeout so that it stops serving data that may already be assigned elsewhere.

    Make sure you give plenty of RAM (in hbase-env.sh), the default of 1GB won’t be able to sustain long running imports.

    Make sure you don’t swap, the JVM never behaves well under swapping.

    Make sure you are not CPU starving the RegionServer thread. For example, if you are running a MapReduce job using 6 CPU-intensive tasks on a machine with 4 cores, you are probably starving the RegionServer enough to create longer garbage collection pauses.

    Increase the ZooKeeper session timeout

    If you wish to increase the session timeout, add the following to your hbase-site.xml to increase the timeout from the default of 60 seconds to 120 seconds.

    <property>
      <name>zookeeper.session.timeout</name>
      <value>1200000</value>
    </property>
    <property>
      <name>hbase.zookeeper.property.tickTime</name>
      <value>6000</value>
    </property>

    Be aware that setting a higher timeout means that the regions served by a failed RegionServer will take at least that amount of time to be transferred to another RegionServer. For a production system serving live requests, we would instead recommend setting it lower than 1 minute and over-provision your cluster in order the lower the memory load on each machines (hence having less garbage to collect per machine).

    If this is happening during an upload which only happens once (like initially loading all your data into HBase), consider bulk loading.

    위 내용을 요약하면 메모리를 늘리거나 CPU가 놀지 않도록 하거나 zookeeper랑 세션 타임을 늘려 주거나 3중 하나이다.

    여기 참조 할 만한 아주 좋은 사이트가 있다.


    http://engineering.vcnc.co.kr/2013/04/hbase-configuration/


    HBase 최적화 설정

    hbase.regionserver.handler.count

    > Regionserver에서 외부로부터 오는 요청을 처리하기 위해서 사용할 Thread의 개수를 정의하기 위한 설정입니다. 기본값은 10인데 보통 너무 작은 값입니다. HBase 설정 사이트에서는 너무 큰 값이면 좋지 않다고 얘기하고 있지만, 테스트 결과 m2.4xlarge (26ECU) 에서 200개 Thread까지는 성능 하락이 없는 것으로 나타났습니다. (더 큰 값에 관해서 확인해 보지는 않았습니다.) 저희는 이 값을 10에서 100으로 올린 후에 약 2배의 Throughput 향상을 얻을 수 있었습니다.

    hfile.block.cache.size
    > HBase 의 block 들을 cache 하는데 전체 Heap 영역의 얼마를 할당한 것인지를 나타냅니다. 저희 서비스는 Read가 Write보다 훨씬 많아서 (Write가 전체의 약 3%) Cache hit ratio가 전체 성능에 큰 영향을 미칩니다. HBase 에서는 5분에 한 번 log 파일에 LruBlockCache (HBase 의 Read Cache) 가 얼마 만큼의 메모리를 사용하고 있고, Cache hit ratio가 얼마인지 표시를 해줍니다. 이 값을 참조하셔서 최적화에 사용하실 수 있습니다. 저희는 이 값을 0.5로 설정해 놓고 사용하고 있습니다. (50%)

    hbase.regionserver.global.memstore.lowerLimit / hbase.regionserver.global.memstore.upperLimit
    > 두 개의 설정은 HBase에서 Write 한 값들을 메모리에 캐쉬하고 있는 memstore가 Heap 영역의 얼마만큼을 할당받을지를 나타냅니다. 이 값이 너무 작으면 메모리에 들고 있을 수 있는 Write의 양이 한정되기 때문에 디스크로 잦은 flush가 일어나게 됩니다. 반대로 너무 크면 GC에 문제가 있을 수 있으며 Read Cache로 할당할 수 있는 메모리를 낭비하는 것이기 때문에 좋지 않습니다. lowerLimit와 upperLimit의 두 가지 설정이 있는데, 두 개의 설정이 약간 다른 뜻입니다. 만약 memstore 크기의 합이 lowerLimit에 도달하게 되면, Regionserver에서는 memstore들에 대해서 'soft'하게 flush 명령을 내리게 됩니다. 크기가 큰 memstore 부터 디스크에 쓰이게 되며, 이 작업이 일어나는 동안 새로운 Write가 memstore에 쓰일 수 있습니다. 하지만 memstore 크기의 합이 upperLimit에 도달하게 되면, Regionserver는 memstore들에 대한 추가적인 Write를 막는 'hard'한 flush 명령을 내리게 됩니다. 즉, 해당 Regionserver이 잠시 동안 Write 요청을 거부하게 되는 것입니다. 보통 lowerLimit에 도달하면 memstore의 크기가 줄어들기 때문에 upperLimit까지 도달하는 경우는 잘 없지만, write-heavy 환경에서 Regionserver가 OOM으로 죽는 경우를 방지하기 위해서 hard limit가 존재하는 것으로 보입니다. hfile.block.cache.size와 hbase.regionserver.global.memstore.upperLimit의 합이 0.8 (80%)를 넘을 수 없게 되어 있습니다. 이는 아마 read cache 와 memstore의 크기의 합이 전체 Heap 영역 중 대부분을 차지해 버리면 HBase의 다른 구성 요소들이 충분한 메모리를 할당받을 수 없기 때문인 듯합니다. 저희는 이 두 개의 설정 값을 각각 0.2, 0.3으로 해 놓았습니다. (20%, 30%)

    ipc.client.tcpnodelay / ipc.server.tcpnodelay / hbase.ipc.client.tcpnodelay 
    > HDFS의 tcpnodelay 와 비슷한 설정입니다. 기본값은 전부 false입니다. 이 설정을 true로 하기 전에는 Get/Put 99%, 99.9% Latency가 40ms 와 80ms 근처에 모이는 현상을 발견할 수 있었습니다. 전체 요청의 매우 작은 부분이었지만, 평균 Get Latency가 1~2ms 내외이기 때문에 99%, 99.9% tail이 평균 Latency에 큰 영향을 미쳤습니다. 이 설정을 전부 true로 바꾼 후에 평균 Latency가 절반으로 하락했습니다.

    Heap memory / GC 설정
    > 저희는 m2.4xlarge가 제공하는 메모리 (68.4GB)의 상당 부분을 HBase의 Read/Write cache에 할당하였습니다. 이는 보통 사용하는 Java Heap 공간보다 훨씬 큰 크기이며 심각한 Stop-the-world GC 문제를 일으킬 수 있기 때문에, 저희는 이 문제를 피하고자 여러 가지 설정을 실험하였습니다. STW GC time을 줄이기 위해서 Concurrent-Mark-and-sweep GC를 사용했습니다. HBase 0.92에서부터 기본값으로 설정된 Memstore-Local Allocation Buffer (MSLAB) 을 사용했습니다. hbase.hregion.memstore.mslab.enabled = true #(default) hbase-env.sh 파일을 다음과 같이 설정했습니다. HBASE_HEAPSIZE = 61440 #(60GB) HBASE_OPTS = "-XX:+UseConcMarkSweepGC -XX:CMSInitiatingOccupancyFraction=70 -verbose:gc -XX:+PrintGCDetails -XX:+PrintGCDateStamps" GC log를 Python script로 Parsing해서 STW GC 시간을 관찰하고 있습니다. 지금까지 0.2초 이상의 STW GC는 한 번도 발생하지 않았습니다.

    그 밖에 도움이 될 만한 설정들

    hbase.hregion.majorcompaction
    > HBase는 하나의 Region에 대해서 여러 개의 StoreFile을 가질 수 있습니다. 그리고 주기적으로 성능 향상을 위해서 이 파일들을 모아서 하나의 더 큰 파일로 합치는 과정을 진행하게 됩니다. 그리고 이 과정은 많은 CPU usage와 Disk IO를 동반합니다. 그리고 이때 반응 속도가 다소 떨어지게 됩니다. 따라서 반응 속도가 중요한 경우에는, 이 Major compaction을 off-peak 시간대를 정해서 manual 하게 진행하시는 것이 좋습니다. 저희는 사용자의 수가 상대적으로 적은 새벽 시간대에 crontab 이 실행시키는 script가 돌면서 전체 Region에 대해서 하나하나 Major Compaction이 진행되도록 하였습니다. 기본값은 86,400,000 (ms)로 되어 있는데, 이 값을 0으로 바꾸시면 주기적인 Major Compaction이 돌지 않게 할 수 있습니다.

    hbase.hregion.max.filesize
    > HBase는 하나의 Region이 크기가 특정 값 이상이 되면 자동으로 2개의 Region으로 split을 시킵니다. Region의 개수가 많지 않을 때는 큰 문제가 없지만, 계속해서 데이터가 쌓이게 되면 필요 이상으로 Region 수가 많아지는 문제를 나을 수 있습니다. Region 수가 너무 많아지면 지나친 Disk IO가 생기는 문제를 비롯한 여러 가지 안 좋은 점이 있을 수 있기 때문에, split 역시 manual 하게 하는 것이 좋습니다. 그렇다고 Table의 Region 수가 너무 적으면 Write 속도가 떨어지거나 Hot Region 문제가 생길 수 있기 때문에 좋지 않습니다. HBase 0.92.1 에서는 기본값이 1073741824(1GB)로 되어 있는데, 저희는 이 값을 10737418240(10GB)로 늘인 후에 manual 하게 split을 하여 Region의 개수를 조정하고 있습니다.

    hbase.hregion.memstore.block.multiplier
    > memstore의 전체 크기가 multiplier * flush size보다 크면 추가적인 Write를 막고 flush가 끝날때까지 해당 memstore는 block 됩니다. 기본값은 2인데, 저희는 8로 늘려놓고 사용하고 있습니다. dfs.datanode.balance.bandwidthPerSec 부수적인 설정이지만, HDFS의 Datanode간의 load balancing이 일어나는 속도를 제한하는 설정입니다. 기본값은 1MB/sec로 되어 있지만, 계속해서 Datanode를 추가하거나 제거하는 경우에는 기본값으로는 너무 느릴 때가 있습니다. 저희는 10MB/sec 정도로 늘려서 사용하고 있습니다.

    dfs.namenode.heartbeat.recheck-interval
    > HDFS namenode에만 해당되는 설정입니다. Datanode가 응답이 없는 경우에 얼마 후에 Hadoop cluster로부터 제거할 것인지를 나타내는 값입니다. 실제로 응답이 없는 Datanode가 떨어져 나가기까지는 10번의 heartbeat가 연속해서 실패하고 2번의 recheck역시 실패해야 합니다. Heartbeat interval이 기본값인 3초라고 하면, 30초 + 2 * recheck-interval 후에 문제가 있는 Datanode가 제거되는 것입니다. 기본값이 5분으로 되어 있는데, fail-over가 늦어지기 때문에 사용하기에는 너무 큰 값입니다. 저희는 문제가 있는 Datanode가 1분 후에 떨어져 나갈 수 있도록 이 값을 15,000 (ms) 으로 잡았습니다.

    Read short-circuit
    > RegionServer가 로컬 Datanode로부터 block을 읽어올 때 Datanode를 통하지 않고 Disk로부터 바로 읽어올 수 있게 하는 설정입니다. 데이터의 양이 많아서 Cache hit이 낮아 데이터 대부분을 디스크에서 읽어와야 할 때 효율적입니다. Cache hit에 실패하는 Read의 Throughput이 대략 2배로 좋아지는 것을 확인할 수 있습니다. OLAP용 HBase에는 매우 중요한 설정이 될 수 있습니다. 하지만 HBase 0.92.1-cdh4.0.1까지는 일부 Region이 checksum에 실패하면서 Major compaction이 되지 않는 버그가 있었습니다. 현재 이 문제가 해결되었는지 확실하지 않기 때문에 확인되기 전에는 쓰는 것을 추천하지는 않습니다. 설정하는 방법은 다음과 같습니다. dfs.client.read.shortcircuit = true #(hdfs-site.xml) dfs.block.local-path-access.user = hbase #(hdfs-site.xml) dfs.datanode.data.dir.perm = 775 #(hdfs-site.xml) dfs.client.read.shortcircuit = true #(hbase-site.xml) Bloom filter Bloom filter의 작동방식에 대해 시각적으로 잘 표현된 데모 페이지 HBase는 Log-structured-merge tree를 사용하는데, 하나의 Region에 대해서 여러 개의 파일에 서로 다른 version의 값들이 저장되어 있을 수 있습니다. Bloom filter는 이때 모든 파일을 디스크에서 읽어들이지 않고 원하는 값이 저장된 파일만 읽어들일 수 있게 함으로써 Read 속도를 빠르게 만들 수 있습니다. Table 단위로 Bloom filter를 설정해줄 수 있습니다. ROW와 ROWCOL의 두 가지 옵션이 있는데, 전자는 Row key로만 filter를 만드는 것이고, 후자는 Row+Column key로 filter를 만드는 것입니다. Table Schema에 따라 더 적합한 설정이 다를 수 있습니다. 저희는 데이터 대부분이 메모리에 Cache 되고 하나의 Region에 대해서 여러 개의 StoreFile이 생기기 전에 compaction을 통해서 하나의 큰 파일로 합치는 작업을 진행하기 때문에, 해당 설정을 사용하지 않고 있습니다.

    '프로그래밍 > hbase' 카테고리의 다른 글

    HBase Thrift Daemon  (0) 2018.11.15
    HBASE 설정  (0) 2017.12.28

    TAG

    댓글 0

Designed by Tistory.